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Abstract

Since the introduction of the camera as a sensor, bearing-only navigation has become a

well-researched area in robotics. One of the long-standing problems in literature has been

the effect of ‘uncertain‘ features in the environment. These features possess uncertainty

by virtue of periodic motion, occasional shifts or a lack of accurate or updated knowledge

about the surroundings. Several map-building strategies including EKF-SLAM have been

proposed to account for such uncertainties in static environment features, and account

for semi-static or dynamic ones. This work demonstrates the efficacy of an augmented

state formulation paired with modified Extended Kalman Filters, towards computation-

ally faster pose estimation in the presence of static environments where the landmark

positions are not exactly known. Such a combination does not require any map building

or disturbance estimation for accurate localization, as it is effective in environments with

large number of features whose known positions are inaccurate. The disturbance rejection

properties of these filtering techniques are also demonstrated in a multi-rate setting, for

a robot model and environment in Gazebo. This thesis also discusses the observability

properties of the bearing-only localization problem formulated in polar coordinates. It

considers variants of the joint state and parameter estimation problem, discusses the un-

observable spaces for each variant and expresses them as loci in 2-D spaces that explain

the degeneracy. These results are further verified by transformations that decompose the

system into observable and unobservable parts.

Keywords: robust estimation, bearing-only localization, observability analysis of

robot localization
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Chapter 1

Introduction

Localization refers to the determination of a vehicle’s position and orientation at a given

time instant, using sensory data and a map of the environment. It is an essential step

that precedes motion planning in two-dimensional or three-dimensional space, especially

when the control that is being implemented depends on the state of the robot. For mo-

bile robots, the concept of localization is crucial when the system is modelled to possess

uncertainties in various forms, such as in the sensor, in the environment or in the way the

robot itself moves. These uncertainties are incorporated by using probabilistic functions

for each part of the system that is non-deterministic in nature. In such situations, local-

ization refers to the bounding of the robot pose1 to an interval, with a certain degree of

confidence.

For real-world mobile robotic systems such as unicycle-like ground robots or multi-

copters, localization is possible using two types of sensors:

• Proprioceptive Sensors: These keep a track of the internal states of a robot,

such as angular velocity of motor, battery voltage, robot acceleration, etc. Sen-

sors such as odometry sensors and inertial measurement units (IMUs) classify as

proprioceptive sensors.

• Exteroceptive Sensors: These extract data from the environment, such as light

intensity, distance from various objects, etc. Sensors such as laser-based scanners,

ultrasonic transmitters & receiver modules and cameras classify as exteroceptive

sensors.

1combined position and orientation
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Chapter 1. Introduction

1.1 Motivation

The introduction of visual servoing in robotics by Espiau, Chaumette & Rives [1] led

to a shift towards cameras as the primary sensor for extracting information from the

environment. The compactness, accuracy and low-cost nature of vision-based sensors

and the sheer volume of data made available by them paved the way for cameras to

replace laser-based sensing in low-cost applications. Since cameras inherently lack range-

based information, various set-ups such as stereo-vision and moving camera setups were

initially required to obtain depth information from the environment. However, bearing-

only system formulations were eventually shown to be tractable for several tasks since

its inception. This section explains the context that this thesis is placed in and discusses

the stimulus for this research.

1.1.1 An Overview of Bearing-Only Localization

The bearing-only localization problem has been recognized as a non-trivial problem in

literature since its introduction by Stansfield [2] in 1947. Bearing-only target tracking

using Kalman filtering has been extremely popular in aerospace, defence and marine

applications, some early notable works belonging to Murphy [3] and Aidala [4]. From an

image-based visual servoing perspective, bearing-only methods have been incorporated

into navigation tasks such as homing. Works such as Loizou & Kumar [5] and Liu,

Pradalier, Chen & Siegwart [6] make use of real-time camera feed to generate closed-loop

control commands based on a-priori information about the environment. However, in

such methods, measurement errors are not accounted for. On the other hand, robot

localization techniques that utilize recursive estimation accommodate the probabilistic

nature of sensor data and the velocity model. Cameras are sometimes used in tandem

with other sensors due to their lack of direct depth information and, until the recent

advances in techniques, the inability to extract long-term features to map. Chenavier

& Crowley [7] fused bearing measurements with odometry readings, while Zingaretti &

Frontoni [8] combined measurements from vision-based sensors and range-based scanners.

However in contemporary literature bearing-only methods in navigation such as Krajńık

et al. [9] are quite popular as well.

The major leap in vision-based localization has been the establishment of correlation

between the robot pose and the map features by Smith, Self & Cheeseman. [10]. The

2



1.1 Motivation

’single state approach’ towards simultaneous localization and mapping took time to gain

popularity but eventually the Extended Kalman Filter was adopted as the main esti-

mation technique in SLAM implementations. Several successful implementations such

as Gutmann & Konolige [11] made use of laser range-finder sensors. Early vision-based

SLAM systems attempted to tackle the scale invariance problem of cameras using differ-

ent approaches. Jung & Lacroix [12] used stereo-vision and image pairs to localize and

estimate map features, while Kim & Sukkarieh [13] used an IMU with the camera to

perform SLAM for an unmanned aerial vehicle. Eventually, systems consisting of solely a

monocular camera could perform SLAM while being able to perform map management,

correct at loop closures and maintain a set of high quality features. The paper by Davi-

son, Reid, Molton & Stasse [14] has been the most prominent attempt in this regard.

Although the field has moved on to keyframe-based methods in SLAM [15–17], EKF-

SLAM is still widely used today. The discussion of background of SLAM is a pertinent

one since this work deals with probabilistic map features as well.

1.1.2 Relevance of Nonlinear Observability

An important aspect of localization, especially in the context of recursive estimation, is

the notion of nonlinear observability. Stochastic observers such as the Extended Kalman

Filter guarantee exponential convergence of the state estimate if the system is observable

in nature, as demonstrated by Reif, Gunther, Yaz & Unbehauen [18]. Ham & Brown [19]

demonstrate the link between system observability and the eigenvalues of the covariance

matrix. For bearing-only formulations, observability of the system depends on the number

of landmarks that the system measures from, usually requiring a lower bound on the

number to reach a maximal dimension of the observable subspace corresponding to the

system. Failure to obtain measurements from that many landmarks leads to growth in

covariance values of the filter. The estimation error cannot be guaranteed to converge in

that scenario.

The observability of various localization problems has been analysed in multiple con-

texts. Martinelli, Pont & Siegwart [20] discussed the observability of a multi-robot lo-

calization problem with access to bearing-only measurements. Martinelli, Tomatis &

Siegwart [21] discussed observability properties of a simultaneous localization and cali-

bration problem. However, significant interest has been shown in the nonlinear observ-

ability properties of SLAM systems. Huang, Mourikis & Roumeliotis [22] explained the

3



Chapter 1. Introduction

inconsistency in the nonlinear observability of the SLAM problem and the observability

properties of the linearized EKF-SLAM. Perera, Melkumyan & Nettleton [23] discussed

the nonlinear approach to observability of the SLAM problem. The unobservable space

for the SLAM problem is well-documented.

There exists observability analysis in literature specifically for bearing-only systems as

well. Vidal-Calleja et.al [24] discuss the observability of the bearing-only SLAM problem.

However, the most comprehensive observability analysis for vision-based systems has been

provided by Belo, Salaris, Fontanelli & Bicchi [25].

1.1.3 Robust State Estimation Techniques

A significant portion of this thesis deals with robust localization in presence of parameter

inaccuracies. Several novel formulations exist in state estimation literature tackling this

problem. Bavdekar, Gopaluni & Shah [26] discuss and compare various adaptive filters

that operate in presence of parameter inaccuracies, while Varshney, Bhushan & Patward-

han [27] presents an extended version of the Kitanidis Kalman Filter, originally proposed

by Kitanidis [28] as a disturbance rejector. In robotic applications, works such as Roume-

liotis, Sukhatme & Bekey [29] circumvent the problem of complex dynamic modelling by

using an error state EKF.

This work specifically tackles localization in environments where the landmark posi-

tions may not be accurately known. Such a situation would arise in a environment with

semi-static2 landmarks, or for a static environment with outdated knowledge of its sur-

roundings. Standard techniques to tackle any such set of features include EKF-SLAM,

however the size of the state vector becomes prohibitively large for a dense set of features.

Rosen, Mason & Leonard [30] and Meyer-Delius, Hess, Grisetti & Burgard [31] both pro-

pose solutions to map building specifically when semi-static landmarks are present in the

environment. However this work emphasises on robot localization and proposes a robust

method to ensure better observer performance without creating a new map.

2landmarks whose location changes intermittently

4



1.2 System Modelling

1.2 System Modelling

This section introduces the bearing-only system and the localization problem associated

with it. The chapter also discusses the augmented state space formulation for the same

problem, introduced by Gupta, Arunkumar & Vachhani [32], and the associated state

transition and measurement maps. The key differences between the two formulations are

noted.

1.2.1 Traditional Bearing-Only State Space Model

Consider a non-holonomic unicycle robot moving on a 2-D plane as shown in the figure 1.1.

The system is formulated using polar coordinates. R and θ specify the polar coordinates

of the robot in 2-D space, while α denotes the orientation. These three coordinates

are sufficient to describe the pose of a robot for two-dimensional motion. The unicycle

is equipped with monocular vision that provides it with bearing measurements from

position C. These are denoted by βi, i ∈ {1, 2, . . . , p}. Hence, the state of the robot is

characterized as:

x =
[
R θ α

]T
(1.1)

The system is formulated with knowledge of the environment, which exists in the form

of a panoramic image captured from a reference position. This is akin to the concept

of the ’home’ position that exists for homing applications [33, 34]. Here, O denotes

the reference position, which, without loss of generality, is considered as the origin of

the X-Y reference frame. The landmarks detected in the panoramic image are indexed

as Li, i ∈ {1, 2, . . . , p} and based on these images, the relative bearing of all these

landmarks w.r.t the positive X-axis from O, are calculated. These are stored a-priori to

the simulation and are denoted by β∗1 , β∗2 , . . .β∗p respectively.

The distance of the ith landmark from the target position D∗i cannot be retrieved solely

from the panoramic images from the home position, since the images lack information

about the scale of the landmarks that are visible. There are two ways to retrieve D∗i for

each landmark:

1. Further information regarding scale of the environment prior to performing the task

can be used to find the scale of the environment. This can be used to compute the

distance of each landmark from the home position. Depending on the information,

just one or all D∗i can be obtained.

5
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Figure 1.1: Representation of the 2-D Bearing-Only Localization Problem

2. For a robot possessing measurements from a particular landmark while it is located

at any point apart from the reference position, a relation can be obtained between

the obtained measurements, the robot and landmark pose. Consider 4OL1C,

4OL2C and 4OL3C in Figure 1.1. Applying the sine law to each of them, we

obtain the following relation [32]:

R

sin(β∗i − (βi + α))
=

D∗i
sin(π − (θ − (βi + α)))

D∗i = R
sin(θ − (βi + α))

sin(β∗i − (βi + α))

(1.2)

Hence, if a particular landmark from the panoramic image is found in the live feed

from the monocular camera, the distance of that landmark from O can be obtained.

In a real-world setting, since only estimates of the robot pose are available and the

measurements can also be assumed to be noisy in nature, the D∗i that is computed

as a result has a certain probability distribution associated with it.

6



1.2 System Modelling

The general nonlinear continuous time state space model is represented as:

ẋ = f(x, u) x ∈M ⊂ Rn, u ∈ Rm

y = h(x) y ∈ Rp
(1.3)

For the given system, g(x, u) and h(x) assume the following structure:

f(x, u) =


cos(α− θ) 0

sin(α− θ)
R

0

0 1


[
V

ω

]
(1.4)

h(x) =


β1

β2
...

βp

 =


atan2(y1 − yR, x1 − xR)− α
atan2(y2 − yR, x2 − xR)− α

...

atan2(yp − yR, xp − xR)− α

 (1.5)

where, for i ∈ {1, 2, . . . , p}, the above xR and yR terms represent the robot position

in Cartesian coordinates, while xi and yi represent the Cartesian coordinates of the ith

landmark. These can be related to the previously introduced variables in the following

manner:

yi = D∗i sin β∗i

xi = D∗i cos β∗i

yR = R sin θ

xR = R cos θ

(1.6)

Modification for Multi-rate Measurements

The measurement model given in Equation 1.5 associates a measurement with each land-

mark in the system output y. However, a measurement cannot be guaranteed for each

landmark in the environment, for two main reasons:

1. Most RGB cameras have a limited field of view, hence only a limited set of features

are available to the camera for measurement, depending on the orientation of the

camera at a particular instant. We assume that the robot in consideration has the

camera frame fixed to always face in the direction of forward motion.

7



Chapter 1. Introduction

2. For the set of features visible to the camera, not all may be correctly identified as the

corresponding landmark that is detected in the panoramic image. Though various

data association techniques exist that match these features with those extracted

from the live feed image, none of them guarantee complete accuracy. Hence even

the few measurements obtained at a given time instant have to be cross-verified

using one of various techniques that exist in literature, due to the possibility of

incorrect matching.

Hence, we also formulate a multi-rate version of the traditional bearing-only system.

Let us assume that out of a total of p landmarks, only q landmarks are correctly identified

at a particular instant. A hypothesis {k1, . . . kq} is created based on the association, which

links the q measurements to the p landmarks.

Hence, the measurement model for these visible landmarks, at any given time instant,

can be written as follows:

h(x) =


βk1
βk2
...

βkq

 =


atan2(yk1 − yR, xk1 − xR)− α
atan2(yk2 − yR, xk2 − xR)− α

...

atan2(ykq − yR, xkq − xR)− α

 (1.7)

where the Cartesian coordinates can be substituted to yield a function only consisting

of the previously introduced variables, by using Equations 1.6.

1.2.2 Augmented State Space Model

We also discuss the augmented state space formulation presented by Misha et al. [32] that

describes and solves the bearing-only localization problem using a different state space

model.

Consider the same problem described by Figure 1.1. The augmented state space

formulation appends the measurements obtained by every landmark to the state vector.

This is done by incorporating the dynamics of the measurements into the state transition

map. The resultant state vector is as follows:

x =
[
R θ φ β1 . . . βp

]T
(1.8)

where βi, i ∈ {1, 2, . . . p} are all the measured bearings as shown in Figure 1.1. Thus,
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1.2 System Modelling

based on the general nonlinear state space model given in Equation 1.3, the functions

f(x, u) and h(x) take the following structure:

f(x, u) =



cos(α− θ) 0
sin(α− θ)

R
0

0 1
− sin(β1)

RC1 −D∗1C∗1
−1

− sin(β2)

RC2 −D∗2C∗2
−1

...
...

− sin(βp)

RCp −D∗pC∗p
−1



[
V

ω

]
(1.9)

= [g1 g2] u (1.10)

where, for brevity,

Ci := cos(θ − (βi + α))

C∗i := cos(θ − (βi + α))

Si := sin(β∗i − (βi + α))

S∗i := sin(β∗i − (βi + α))

(1.11)

The measurement equation, to measure all the landmarks is given by:

y = h(x) =


β1

β2
...

βp

 = Cx (1.12)

C = [0̄p×3 Ip] (1.13)

Modification for Multi-rate Measurements

For the multi-rate scenario, note that the state vector does not change in its form. All the

landmarks registered from the panoramic image are retained as states even if they are not

measured for one or many time instants. We do not consider dynamic map management

9
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or the addition or deletion of any features as part of this formulation. The measurement

model can be represented as:

h(x) =


βk1
βk2
...

βkq

 = Cx (1.14)

C = [0̄q×3 Kq×p] (1.15)

The elements of K consist of 1’s corresponding to the measurement associated with

the matched landmark, while the rest of the elements are 0’s. Hence,

Kij = δkij (1.16)

where δkij represents the Kronecker delta for the tuple of indexes.

δkij =

1, if ki = j

0, otherwise
(1.17)

1.2.3 Summary

The augmented state space model differs from the traditional model solely in the way

that it is formulated in, since both the models can be used to describe the same local-

ization problem. The difference lies in where the landmark coordinates appear. For the

traditional state space model, the terms D∗i and β∗i appear solely in the measurement

map, hence the state evolution over time does not depend on these coordinates.

However, for the augmented state space, D∗i and β∗i are incorporated in the evolution of

the measurements, since the measurements βi’s are included in the state vector. Hence the

landmark coordinates are solely included in the state transition map. This has significant

advantages as is discussed later in the thesis. Also, as a consequence, the measurement

model is now linear in nature for each landmark that is being observed at a given time

instant.

10
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1.3 Contribution

This thesis addresses two areas in bearing-only localization: the problem of observability

of joint state and parameter estimation problems for various parameter choices, and the

problem of robot pose localization in presence of landmark position inaccuracies.

With regards to the first area:

• This work determines lower bounds for the number of landmarks, for a bearing-

only system formulation to achieve maximal observability rank, for various choices

of landmark coordinates to be estimated as parameter. It also interprets the kernel

basis vectors computed for each formulation as loci of initial states in 2-dimensional

space, thus demonstrating the origin of the degeneracy in the system. The analysis

is in polar coordinates, which is more appropriate for expressing both robot and

landmark positions, for this work. It differs from Belo et al. [25] as it specifically

computes the maximal observability rank and kernel basis vectors for each choice of

coordinate of the landmark position, thus providing a more intuitive understanding

of the system geometry for all types of formulations.

• For the observability results obtained, the thesis presents transformations that de-

compose the system into observable and unobservable spaces. This enables estima-

tor convergence for maximum number of states for that localization problem. The

nature of the transformation also validates the understanding of the unobservable

spaces. These transformations are ubiquitous to choice of parameter.

With regards to the second area:

• The merits of a previously-introduced augmented state space formulation over the

traditional observer for bearing-only localization are demonstrated, specifically for

environments where landmark positions are uncertain. It is shown that better

estimates of robot pose are attainable using modified EKFs, without having to con-

tinually estimate the landmark positions. The Q-EKF, paired with the augmented

state space formulation, performs better than the EKF-SLAM for low values of

initial estimate error and is computationaly less consuming due to a smaller state

vector than the EKF-SLAM formulation. It is shown to be effective in simulation

with a robot model with a vision pipeline, in a Gazebo environment, when it is

paired with an outlier rejector.

11
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• The PI-Q-EKF is proposed to nullify errors in initial state estimate when paired

with the augmented system. Its superiority in performance to the EKF-SLAM and

Q-EKF is demonstrated in simulation. A search space for the proportional and

integral gains is specified for this system, within which tuning of parameters would

yield suitable gain matrices.

1.4 Thesis Overview

The contents of this thesis are distributed among the succeeding chapters as follows:

• Chapter 2 introduces the concept of nonlinear observability in a differential geomet-

ric context and construct algorithms to compute the observability codistribution of

nonlinear system, for piecewise constant inputs and for analytic inputs. The unob-

servable space for each state and parameter estimation problem is computed using

the symbolic computation software Mathematica. The basis vectors of this space

are interpreted in 2-D space. The validity of these results are checked for potential

anomalies.

• Chapter 3 validates the results obtained in the previous chapter by introducing

coordinate transformations based on the intuition gathered from the observability

results. These transformations decompose the system into observable and unob-

servable spaces. Simulation results for the transformed systems are provided.

• Chapter 4 discusses the problem of robot pose estimation in presence of inaccurate

knowledge of landmark positions. Two modifications to the EKF, the Q-EKF and

the PI-Q-EKF, are proposed to mitigate estimator divergence due to the inaccuracy

and to eliminate any initial estimation error simultaneously. The efficacy of these

modified filters paired with the augmented state space formulation is compared

with EKF-SLAM for static landmarks.

• Chapter 5 presents a robot model and a planar environment in Gazebo. The camera

model and computer vision algorithm is discussed and simulations are carried out

for accurate as well as inaccurate knowledge of the landmarks. Comparisons are

drawn between the two state space formulations and the appropriate filters used

for each one.
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1.4 Thesis Overview

• Chapter 6 provides concluding remarks for this thesis and discusses the possible

future of this work.
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Chapter 2

Nonlinear Observability Analysis

This chapter presents the theory of nonlinear observability in a differential geometric

context and discusses various results presented on the basis of this theory. The contents

of the chapter are mainly derived from the works of Hermann and Krener [35], Isidori [36],

Sontag & Wang [37], Sussmann [38] and Anguelova [39].

2.1 Introduction to Nonlinear Observability

Consider a driftless nonlinear system affine in the control inputs, henceforth referred to

as Σ. Such a system takes the following form:

ẋ = g(x)u x ∈M ⊆ Rn, u ∈ Rm

y = h(x) y ∈ Rp
(2.1)

The control-affine part g(x)u can be expressed as the summation of its individual

column vectors weighted by each control input:

g(x)u =
m∑
i=1

gi(x)ui i ∈ {1, 2, . . .m} (2.2)

The measurement model is also expressed as the composition of various scalar-valued
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functions hj : Rn → R as components of the vector-valued function:

h(x) =


h1(x)

h2(x)
...

hp(x)

 (2.3)

We discuss the concept of distinguishability introduced by Hermann & Krener [35].

The idea arises from the need to tell apart two points in the state space, x0 and x1, based

between their input-output realizations for a bounded control input u(t). Restricting the

concept to trajectories that lie completely within a subset U ⊂ M , the formal definition

of distinguishability is given as follows:

Definition 2.1.1. Let the flow of the system Σ for a known bounded input u(t) be defined

as Φ(x, t). A pair of points x0 and x1 in M are called U-indistinguishable if for every

bounded input defined on the interval [0, T ] for which Φ(x0, t) ∈ U and Φ(x1, t) ∈ U ∀ t ∈
[0, T ], the condition hi(Φ(x0, t)) 6= hi(Φ(x1, t) is satisfied ∀ t ∈ [0, T ], i ∈ {1, 2, . . . p}.

The notation I(x0, U) is introduced to denote the set of points that are not U-

indistinguishable from x0. These set of points cannot be differentiated from one an-

other based on the system output observed during the trajectory, for the same control

input. We link the observability of the system to the indistinguishability property in the

following manner:

Definition 2.1.2. The system Σ is said to be observable at x0 ∈M if I(x0, U) = {x0}.

We define the system Σ to be observable on M if it is observable ∀ x0 ∈ M . Two

important variations to this definition are introduced:

• We want to preclude a pair of points from becoming indistinguishable after an

arbitrary amount of time. Hence, we restrict U to every open neighbourhood of

x0 and call the system Σ as locally observable if I(x0, U) = {x0} for trajectories

restricted within every open neighbourhood of x0.

• In practice, we find it sufficient to distinguish x0 from solely its neighbours. Thus,

we define the system Σ to be weakly observable if there exists an open neighbourhood

of x0, V , I(x0)∩V = {x0}. This is a weaker definition of observability as a system

observable at x0 over an open subset is weakly observable at x0 as well.
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2.2 Algebraic Test for Local Weak Observability

Hence, we formalize the definition of local weak observability below.

Definition 2.1.3. The system Σ can be considered locally weakly observable at x0 ∈
M if there exists an open neighbourhood V such that for every open neighborhood U that

is contained in V , I(x0, U) = x0.

The significance of local weak observability over the other definitions is the ability to

evaluate it using an algebraic test. The test is described in depth in the next section.

2.2 Algebraic Test for Local Weak Observability

This section discusses the algebraic tools and the algorithm used to determine if a system

Σ is locally weakly observable or not. This algebraic analysis differs slightly based on

the type of control input provided to the system. However, we begin by defining the Lie

Derivative of a real-valued function λ(x), while x flows along the vector field v(x):

Lvλ(x) = lim
x→0

λ(Φv(x, t))− λ(Φv(x, 0))

t

=
d

dt

∣∣∣∣
t=0

λ(Φv(x, t))
(2.4)

where Φv(x, t) provides the flow of the vector field v at a time instant t, for a starting

point x.

The local weak observability tests are described below for the following categories of

control inputs:

2.2.1 Piecewise Constant Inputs

Most autonomous systems that operate in state feedback control in real time receive

piecewise constant control inputs, due to the zero order hold nature of discrete-time

controllers. The input remains constant for the duration of the sampling time of the

controller. Hence, this analysis practically extends to all systems operating in real time.

The observable codistribution of a system is defined as follows:

Definition 2.2.1. A nonsingular codistribution Ω is termed as the observable codis-

tribution of Σ at x0 ∈M if it is the smallest codistribution that spans the covector field
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spanned by {dh1, dh2, . . . dhp} and is invariant (to Lie differentiation) under the vector

fields {g1, g2 . . . gm}.

Isidori et al. [36] shows that the existence of an involutive distribution of dimension d

that is orthogonal to the codistribution defined in Definition 2.2.1, implies the existence

of a coordinate transformation for the system that allows the transformed region to be

partitioned into ’slices’ of dimension d such that all points on the same slice produce the

same output.

The space G at x0 is defined as the space containing {h1, . . . hp} and closed under Lie

Differentiation by {g1, . . . gm}. The elements of G are finite linear combinations of the

form:

Lgj1 (. . . (Lgjk (hi))) (2.5)

where gj1 ,. . . gjk belong to span{g1, . . . gm}. The gradient operator d commutes with Lie

differentiation operator Lf , enabling the calculation of dG at x0 by taking the gradient

of each element of G. The elements of dG are finite linear combinations of the form:

d(Lgj1 (. . . (Lgjk (hi)))) = Lgj1 (. . . (Lgjk (dhi))) (2.6)

These elements from Equation 2.6 span dG. dG matches the definition of the space

described by Definition 2.2.1 and hence we term dG as the observable codistribution1 of

the system Σ.

Since the system Σ is autonomous and has piecewise constant control inputs, the Lie

Derivative calculation reduces to a dot product:

Lgi hj = dhj(x) · gi (2.7)

To compute the observable codistribution at a point x0, [36] proposed a recursive

algorithm that constructs the codistribution. The following set of equations are used

iteratively:

Ω0 = span {dxh1, . . . , dxhp} (2.8)

Ωk = Ωk−1 +
m∑
i=1

Lgi Ωk−1 (2.9)

The terminal condition specified by the algorithm is if there exists a k such that

1used interchangeably with the term ‘observable subspace‘
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2.2 Algebraic Test for Local Weak Observability

Ωk = Ωk+1, for which k∗ := k. In that case, the algorithm is said to have arrived upon

dG. The system is said to be locally weakly observable if dim(dG) = p.

This work sticks to Lie derivative calculation of exact differentials instead of working

with covector fields as the above algorithm does. We find the space G by using iterative Lie

differentiation of {h1, . . . hp}, which are scalar-valued functions, to arrive to a form such

as (2.6). The next step is the calculation of the gradient of each element. Together, these

gradients span dG(x) which is the cotangent space at x. These gradients, also referred

to as covectors, make up the rows of the observability matrix . The observability

rank condition alludes to the rank of this observability matrix being equal to p for the

system to be locally weakly observable at x.

Since the algebraic computation is done on Mathematica, we provide the pseudo-code:

Algorithm 1: Observability Rank Computation for Piecewise Constant Inputs

1 currentLieDerivatives ← {}, prevLieDerivatives ← {h1, . . . hp};
2 currentObsRank, prevObsRank ← 0;

3 obsMatrix ← Jacobian(h(x), x);

4 obsRankCondn ← 0;

5 while currentObsRank < p do

6 currentLieDerivatives ← {};
7 foreach λ ∈ prevLieDerivatives do

8 foreach i ∈ {1, . . .m} do

9 curentLieDerivatives.append(Lgiλ);

10 obsMatrix ← vertCat(obsMatrix, Jacobian(Lgiλ, x));

11 end

12 end

13 prevLieDerivatives ← currentLieDerivatives;

14 prevObsRank ← currentObsRank;

15 currentObsRank ← Rank(obsMatrix);

16 if prevObsRank == currentObsRank then return;

17 end

18 obsRankCondn ← 1;

19 return;

It is essential to note that both methods (the algorithm used above and the one
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that uses Equations 2.8) essentially compute the dimension of the same space, hence

we use the same terminal condition used for Equation 2.8 by manually checking the

dimension of dG(x) after each step of Lie differentiation. The algorithm is terminated

if the observability matrix rank remains the same for consecutive steps, since this is

equivalent to adding covectors that already belong to the codistribution.

2.2.2 Analytic Inputs

Here we discuss the generic nonlinear system (of the form of Equation 1.3) with control

inputs that are continuous functions of time, hence reverting to that notation. In fact,

for this section, we assume each input to belong to C∞.

The expression of the Lie derivative for a system with analytic input slightly differs

from the one in Equation 2.7. Let the initial values of u and its derivatives be u(r)(0) =

U(r) for r ≥ 0 with U(r) ∈ R. We start from 2.4 just as before, however it reduces to

the following expression [39]:

Lf hj = dhj(x) · f +
∑
l

U (l+1)∂hj
∂u

for some l ≥ 0 (2.10)

Since the inputs are continuous functions of time, this expression simplifies to:

Lf hj = dhj(x) · f +
∂h

∂t

∣∣∣∣
t=0

(2.11)

Using this definition, the set of Lie derivatives obtained can be expressed as a poly-

nomial in U0, U1, . . . whose coefficients are functions of x. Since the U(r)’s are free to

vary over R, their coefficients (which are covectors) can be interpreted as spanning a

space. Sontag & Wang [37] uses this to present a different definition of the observation

space, which is then proven equivalent to the cotangent space dG in the previous sec-

tion. However, this work sticks to the previous method of computing the codistribution

recursively.

Wang and Sontag [40] show the equality of the observation space for systems with

piecewise constant control with those equipped with analytic control inputs. Hence we

use Definition 2.2.1 for this type of system and control input as well. By iterated Lie

differentation to obtain elements of the form given in (2.6), we obtain the observable

codistribution dG at x. The only difference is the presence of the terms U0, U1, . . .

20



2.2 Algebraic Test for Local Weak Observability

etc in the vectors spanning dG. A pseudo-code similar to Algorithm 1 to calculate the

observability rank is given below:

Algorithm 2: Observability Rank Computation for Analytic Inputs

1 currentLieDerivatives ← {}, prevLieDerivatives ← {h1, . . . hp};
2 currentObsRank, prevObsRank ← 0;

3 obsMatrix ← Jacobian(h(x), x);

4 obsRankCondn ← 0;

5 while currentObsRank < p do

6 currentLieDerivatives ← {};
7 foreach λ ∈ prevLieDerivatives do

8 curentLieDerivatives.append(Lfλ);

9 obsMatrix ← vertCat(obsMatrix, Jacobian(Lfλ, x));

10 end

11 prevLieDerivatives ← currentLieDerivatives;

12 prevObsRank ← currentObsRank;

13 currentObsRank ← Rank(obsMatrix);

14 if prevObsRank == currentObsRank then return;

15 end

16 obsRankCondn ← 1;

17 return;
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2.3 Observability Properties for Piecewise Constant

Inputs

Sufficient literature has covered the observability properties for bearing-only systems,

for varying number of landmarks. It has been established by Belo et al. [41] and by

Martinelli [42] that for known landmark positions, 2 landmarks are sufficient for a system

to be locally weakly observable. However, most of the above work has been done for the

localization problem formulated in the Cartesian coordinates. The problem presented in

this thesis presupposes knowledge of the environment in the form of a panoramic image

from the reference position. Hence, for any localization problem, the system has a-priori

knowledge of β∗i ’s as shown in Figure 1.1. For such applications, the localization and

subsequent closed-loop control strategy to return to the reference position can be better

represented in polar coordinates. Hence polar coordinates are the choice of coordinate

system for this work.

This section also introduces observability analysis for joint state and parameter for-

mulations. From a landmark position estimation perspective, for this system, polar coor-

dinates are the more logical option to describe the position of landmarks as well. In fact,

some results that are described later in this section are obtained faster from the symbolic

computation software than if Cartesian coordinates are used to describe the location of

the landmarks. However, we do not claim that the results obtained for polar coordinates

are different for the same system formulated in Cartesian coordinates; in fact, the results

are expected to be identical irrespective of the choice of coordinate system used for the

robot.

Observability properties for joint state and parameter formulations have been analyzed

by Belo et al. [25], however no such analysis in literature extends to polar formulations.

This work also provides geometric interpretations to the basis vectors that span the

space orthogonal to the observable subspace. The emphasis remains on finding the lower

bound on the number of landmarks required for the system to reach the minimum possible

dimension of the aforementioned space, which is also referred to as the unobservable space.

All the results in this section are for piecewise constant inputs. The modifications

made to the traditional bearing-only system formulation, to accommodate parameter

estimation, can be grouped in the following categories:
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2.3.1 Robot Pose Localization

The state vector is identical to that in Equation 1.1. It consists of the two-dimensional

robot pose, with polar coordinates being used to describe the robot position. Hence it

takes the following form:

x =
[
R θ α

]T
(2.12)

The system has the same state transition map and the measurement map given in

Equations 1.4 and 1.5 respectively.

1 landmark

The system is not observable for p = 1. The rank of the observability matrix is computed

to be 2. Hence the unobservable space is spanned by only one vector:

dG⊥ = span
col.


sin(β∗1 − θ)

1− D∗1 cos(β∗1 − θ)
R

1


, span [ l1 ]

(2.13)

For given state x0, these vectors span the indistinguishable subspace around it, i.e.

the set of points x0+ε1l1 realize the same input-output map, for a sufficiently small value

of ε1. Hence, any linear combination of this basis vector can be expressed as a shift in

the initial state x0.  δR

δθ

δα

 = ε1l1 (2.14)

To understand this space qualitatively, we use the following relations converting solely

the components corresponding to shift in robot position, from polar to cartesian:

δR = δxR cos θ + δyR sin θ

Rδθ = −δxR sin θ + δyR cos θ
(2.15)

The difference terms δx and δy are condensed after substituting for l1 from Equation

2.13, into 2.15. Expressing l1 in robot transformed coordinates, using Equation 1.6 yields
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θ
β∗
1

D∗
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D1δφ
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Figure 2.1: Nullspace for Robot Pose Localization (p = 1)

l1c :

l1c = [y1 − yR − x1 + xR 1]T (2.16)

Now, consider the case of the robot undergoing a rotation around the landmark by a

small angle αs. Using the small angle approximation, the transformation can be repre-

sented by the following equation:[
xaR − x1
yaR − y1

]
=

[
1 −αs
αs 1

][
xR − x1
yR − y1

]
(2.17)

which simplifies to: [
xaR
yaR

]
=

[
xR

yR

]
+ αs

[
−yR + y1

xR − x1

]
(2.18)

Notice that l1c takes the same form as the vector in Equation 2.18, while additionally

imposing the condition that the orientation α should rotate by the same angle. Hence, in

the original state space, x0 + ε1l1 corresponds to the states achieved by slightly rotating
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robot C around L1, as demonstrated in Figure 2.1.

2.3.2 Joint Robot Pose and Landmark Distance Estimation

Given only one panoramic image from the home position (which is usually the available

information for homing applications), the system does not possess landmark distances.

Hence, the state vector can be appended with D∗i ’s, as shown in Figure 1.1 to have the

following:

x =
[
R θ α D∗1 . . . D∗p

]T
(2.19)

The system observability for varying number of landmarks is as follows:

1 Landmark

For p = 1, the system is not locally weakly observable. The observable codistribution has

a rank two less than the state vector size. The nullspace has the following basis vector:

dG⊥ = span
col.


sin(β∗1 − θ) cos(β∗1 − θ)

1− D∗1 cos(β∗1 − θ)
R

sin(β∗1 − θ)
R

1 0

0 1


, span [ m1 m2 ]

(2.20)

It is clear that the first three components of m1 is identical to l1 and does not point

to a shift in D∗1. Hence the geometrical interpretation should be the same.

The geometric interpretation for the origin of the second basis vector, m2, is analysed

in the same manner, using Equations 2.15, 2.20 and 2.23. The transformation to m2c

yields the following:

m2c = [cos β∗1 sin β∗1 0 1]T (2.21)

It is evident from the structure of m2c that if the robot and landmark are shifted in

parallel by equal distance, while keeping β∗1 constant, the new state is degenerate in

terms of input-output behaviour. A pictorial representation of the same is provided in

Figure 2.2
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Figure 2.2: Nullspace for Joint Robot Pose and Landmark Distance Estimation (p = 1)

2 landmarks

For p = 2, the system is not locally weakly observable either. The observable codistribu-

tion has a rank one less than the state vector size. The nullspace has the following basis

vector:

dG⊥ = span
col.



D∗1 cos(β∗2 − θ)−D∗2 cos(β∗1 − θ)

sin(β∗1 − β∗2)− D∗1 sin(β∗1 − θ)−D∗2 sin(β∗2 − θ)
R

sin(β∗1 − β∗2)

D∗1 cos(β∗1 − β∗2)−D∗2
D∗1 −D∗2 cos(β∗1 − β∗2)


, span [ n1 ]

(2.22)
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2.3 Observability Properties for Piecewise Constant Inputs

Hence, any linear combination of the basis vectors can be expressed as a shift in the

states. 
δR

δθ

δα

δD∗1
δD∗2

 = ε3n1 (2.23)

To understand what the space spanned by n1 implies, Equation 2.15 is used in the same

manner to yield:

δxR = ε3[D
∗
1 cos β∗2 −D∗2 cos β∗1 −R sin θ sin(β∗1 − β∗2)]

δyR = ε3[D
∗
1 sin β∗2 −D∗2 sin β∗1 +R cos θ sin(β∗1 − β∗2)]

(2.24)

for a small quantity ε3. Since β∗1 and β∗2 are constants, we only discuss the radial shifts

in landmarks L1 and L2.

Let us discuss the relative shift between the bot and a landmark in a particular

direction. The relative shift in X direction is:

δxR − δD∗1 cos β∗1 = ε3[D
∗
1 cos β∗2 −D∗2 cos β∗1

−R sin θ sin(β∗1 − β∗2)]− ε3[D∗1 cos(β∗1 − β∗2)−D∗2] cos β∗1

= ε3 sin(β∗1 − β∗2)(−yR + y1)

= ε
′

3(−yR + y1)

(2.25)

Similarly, relative motion in Y direction:

δyR − δD∗1 sin β∗1 = ε3[D
∗
1 sin β∗2 −D∗2 sin β∗1

+R cos θ sin(β∗1 − β∗2)]− ε3[D∗1 cos(β∗1 − β∗2)−D∗2] sin β∗1

= ε3 sin(β∗1 − β∗2)(xR − x1)
= ε

′

3(xR − y1)

(2.26)

The same can be demonstrated for shifts relative to L2 as well. Thus, a shift along the

unobservable subspace translates to the robot and the landmarks shifting such that with

respect to each landmark, the robot is rotated by a small angle around it.

The change in orientation has the same magnitude of rotation ε
′
3, hence relative to

both landmarks, the robot revolves around them simultaneously.

The pictorial representation of this is provided in Figure 2.3. Notice that the shift in
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Figure 2.3: Nullspace for Joint Robot Pose and Landmark Distance Estimation (p = 2)

landmark distances may be in the same or opposite directions, depending on the values

of β∗1 and β∗2 .

3 or more landmarks

The observable subspace has the rank equal to state vector size. Hence, for p ≥ 3 the

system is locally weakly observable, imparting the property of distinguishability of x0

from its neighbours. The nullspace of the subspace spans {Φ} as a result.

2.3.3 Joint Robot Pose and Landmark Bearing Estimation

For situations in which landmark distances can be assumed as known but the bearings

may be unknown, β∗i ’s, i ∈ {1, 2, . . . p} as shown in Figure 1.1 can be appended to the

state vector, resulting in the following:

x =
[
R θ α β∗1 . . . β∗p

]T
(2.27)
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Figure 2.4: Nullspace for Joint Robot Pose and Landmark Bearing Estimation (p = 1)

The system observability for varying number of landmarks is as follows:

1 Landmark

For p = 1, the observable codistribution has a rank two less than the state vector size.

Hence the system is not locally weakly observable in this case. The nullspace has the

following basis vector:

dG⊥ = span
col.


sin(β∗1 − θ) 0

1− D∗1 cos(β∗1 − θ)
R

1

1 1

0 1


, span [ p1 p2 ]

(2.28)

The first vector p1 is identical to m1 and hence spans the same slice of the neighbourhood

of x0. The second vector p2 indicates a degeneracy of all initial states corresponding to

equi-angular rotation of the robot pose and landmark, around the origin. The geometric

implications of the nullspace basis is depicted in Figure 2.4.
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2 or more landmarks

For p ≥ 2, the observable codistribution has a rank one less than the state vector size.

Hence the system is not locally weakly observable. The nullspace is spanned by the

following basis:

dG⊥ = span
col.


0

1

1
...

1


, span [ q1 ]

(2.29)

The basis vector q1 suggests that all initial states for which the robot pose and both

landmarks are rotated by the same angle around the origin, demonstrate the same input-

output behaviour. This is illustrated in Figure 2.5.
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Figure 2.6: Nullspace for SLAM (p = 1)

2.3.4 Simultaneous Localization and Mapping

The most frequent scenario when landmark positions are probabilistic in nature is when

both coordinates require estimation. This is referred to as the simultaneous localization

and mapping (SLAM) problem. We present the results of the nonlinear observability

analysis of the SLAM problem expressed in polar coordinates, which is represented by

the following state vector:

x =
[
R θ α D∗1 β∗1 . . . D∗p β∗p

]T
(2.30)

The nonlinear observability of SLAM has been well documented in [22, 24]. How-

ever, for this particular formation, the symbolic toolbox performance does not demon-

strate consistency between its rank calculation and its search for the basis spanning the

nullspace. The responsibility of vetting the results from the software lies on the user,

hence results from the aforementioned papers is used to manually check the nullspace of

the observability matrix. Upon manual verification, we present the vectors spanning the
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unobservable space:

dG⊥ = span
col.



cos(α− θ) − sin(α− θ) 0

sin(α− θ)
R

cos(α− θ)
R

1

0 0 1

cos(α− β∗1) − sin(α− β∗1) 0

sin(α− β∗1)

D∗1

cos(α− β∗1)

D∗1
1

...
...

...

cos(α− β∗p) − sin(α− β∗p) 0

sin(α− β∗p)
D∗p

cos(α− β∗p)
D∗p

1


, span [ r1 r2 r3 ]

(2.31)

The kernel structure shows degeneracy in the output map for the initial states slightly

shifted in the radial or tangential direction, as long as the landmark is shifted in the same

manner such that the pose relative to the landmark remains the same. Hence, for unit

distance shift for the robot and all landmarks, they can be shifted in any direction in

2D space. The degeneracy extends to rotation of robot pose and landmark around the

origin, by the same angle.

This result applies for all p ≥ 1.

2.3.5 Checking for Anomalies

The use of computational tools to obtain the above results implies that even though the

results are applicable for a generic point in the state space, they might not be applicable

for every point in the state space. Besançon & Bornard [43] remark that the observability

matrix rank computed using symbolic computation software such as Mathematica is valid

for almost all values of x. In this section, we attempt to manually search for any deviation

from the reported results. We look at two possible issues that may arise for certain points

in the state space:

1. A particular element in the observability matrix becoming undefined

2. Reduction in dimension of dG
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We note that the state equations 1.4 and 1.5 do not have a denominator that would

cause the former issue to occur in any of the iterated Lie derivative terms. Hence, for

this system we only analyse the latter issue.

To find regions in the state space where the dimension of dG may be lower than

usual, a list of configurations are made for which such a situation may arise. These

configurations are listed below:

• For one landmark:

1. When the robot is collinear with the origin and the landmark (i.e., θ = β∗1)

2. When robot is moving towards/away from the landmark (i.e. α = atan2(y1 −
yR, x1 − xR + 0/π)

3. When 1 and 2 are encountered simultaneously

• For two landmarks:

1. When the robot is collinear with the origin and one landmark (i.e., θ = β∗1)

2. When the robot is collinear with both the landmarks but not the origin (i.e.,

R =
D∗1D

∗
2 sin(β

∗
1 − β∗2)

D∗2 sin(θ − β∗2)−D∗1 sin(θ − β∗1)
)

3. When the robot is collinear with the origin and both landmark (i.e., θ = β∗1 =

β∗2)

4. When robot is moving towards/away from one landmark (i.e. α = atan2(y1−
yR, x1 − xR + 0/π)

5. When 2 and 4 are encountered simultaneously

The observability matrix is arrived at, for these configurations, by substituting the

equivalent mathematical conditions in the generic matrix itself. The rank remains con-

stant for all of these conditions, irrespective of the type of formulation. These results

deem the same analysis for higher number of landmarks as redundant.

2.4 Observability Analysis for Analytic Inputs

In this section, the observability properties of the traditional state space formulation of

the bearing-only localization problem are studied in the presence of analytic inputs. It can

be empirically inferred that the computational power required to find the observability

rank increases as the number of symbols in the formulation increases. Hence this analysis

is restricted to robot pose localization problems only.

33



Chapter 2. Nonlinear Observability Analysis

Analytic inputs are not widely used for robotic applications since most micro-controllers

issuing control commands are digital in nature, and hence have an associated sampling

time. However, analytic inputs are widely used in missile applications where analog

circuits are used to deliver control signals.

This section considers three types of inputs provided to the system and uses Algorithm

2 to evaluate the dimension of dG.

2.4.1 Parabolic Control Inputs

The choice of control input here is parabolic with time. The forward velocity V and the

steering angular velocity ω take the following form:

V = a0t
2 + a1t+ a2

ω = b0t
2 + b1t+ b2

(2.32)

The above generic coefficients appear in the observability matrix by repeated use of

Equation 2.11. However, the observability properties of this system are the same as those

observed for piecewise constant inputs (in Subsection 2.3.1).

2.4.2 Sinusoidal Control Inputs

The choice of control input here is sinusoidal with time. The forward velocity V and the

steering angular velocity ω take the following form:

V = a0 sin(a1t+ a2) + a3

ω = b0 sin(b1t+ b2) + b3
(2.33)

The above generic coefficients, now 8 in number, appear in the observability matrix

by repeated use of Equation 2.11. However, the observability properties of this system

are the same as those observed for piecewise constant inputs (in Subsection 2.3.1).

2.4.3 Closed-Loop Control Inputs: Homing Strategy

The choice of control input here is closed-loop, with the control strategy being that of

homing. The forward velocity V is assumed to be constant, however the steering angular

34



2.5 Summary

velocity ω take the following form:

ω = a0 [π − (α− θ)] (2.34)

The observability properties of this system are surprising, as this system is shown to

be observable with just 1 landmark to take bearing measurements from. This result is

noted, however the implicit assumption made by substituting for ω in Equation 1.4 is that

it is now a part of the state transition map and hence not an exogenous input anymore,

which is fallacious especially when there is an observer involved and the estimation and

control problems are coupled. In that case, the control input then becomes ω = a0 [π −
(α̂ − θ̂)], which is a different structure for which this result does not necessarily apply.

Hence the problem has to be described in an appropriate manner for the result to be

interpreted correctly.

2.5 Summary

This chapter introduced the concept of nonlinear observability and the relevance of local

weak observability for nonlinear systems. The observable codistribution for the system is

defined and algorithms are constructed to compute the observable subspace for systems,

for piecewise constant inputs as well as analytic inputs. We proceed to compute the rank

as well as kernel basis vectors of this observable subspace of four joint state and parameter

formulations, for various choice of landmark position coordinates to be estimated. We

observe that the kernel basis that spans the unobservable subspace for robot pose local-

ization, is present in the kernel of all other formulations where a parameter is also being

estimated. Another key observation is that the root of all these degeneracies is solely

the relative motion of the robot pose on a circle around a landmark. These inferences

shall be important in the next chapter, where an attempt is made to validate the results

obtained in this chapter.
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Chapter 3

Validation of Observability Analysis

In this chapter, coordinate transformations are proposed to segregate joint state and

parameter formulations into observable and unobservable parts. This serves to validate

the results obtained in the previous chapter and further establish the degeneracy for each

system through the transformations.

3.1 Coordinate Transformation for Decomposition

The dimension of observable subspace has been computed for several variations of the

state and parameter estimation problem for the non-holonomic vehicle in the previous

chapter. The kernel basis is also computed and rationalized for each case. However for an

individual state xi to be observable, the unit vector corresponding to it in the state space,

ei := [0 . . . 1i . . . 0]T must be orthogonal to dG⊥. The estimation error corresponding to

xi converges to 0 for an observer if the above condition is met.

In this chapter we seek to find the observable states and separate them from the

unobservable ones. Isidori et al. [36] prove that for a nonlinear affine system Σ for

which dG possesses a dimension n − d, for every point x there exists a local coordinate

transformation z = Γ(x) defined in a neighbourhood of x such that the transformed

system can be represented in the form:
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ξ̇1 =
m∑
i=1

g1i (ξ1, ξ2)ui

ξ̇2 =
m∑
i=1

g2i (ξ2)ui

yi = hi (ξ2)

(3.1)

where ξ1 = [z1 . . . zd]
T and ξ2 = [zd+1 . . . zn]T

Here ξ1 consists of all the unobservable states, whereas ξ2 consists of all of the observ-

able ones. We can verify that all components of ξ2 are orthogonal to the unobservable

space. This clear demarcation means that in an observer-based simulation, the estimation

error corresponding to exactly n − d states will converge to zero. This work attempts

to find such a coordinate transformation that manages to express each joint state and

parameter formulation in such a manner to verify the results obtained in the previous

section. This is equivalent to the Kalman decomposition for linear systems to find its

observable and unobservable parts.

The transformations discussed further in this section do not match the structure of the

equations in 3.1, however the transformed space contains exactly d unobservable states.

Thus observer convergence for the maximum number of xi’s is guaranteed.

To arrive at a transformation, the physical meaning of a degeneracy common to all

formulations in the previous section, is discussed. Except for m2 in Equation 2.20,

where there is no relative motion between R and L1, all kernel basis vectors entail that

relative to the landmark, the initial robot pose must shift on a circle for the initial

state vector to remain indistinguishable, for any joint state and parameter estimation

formulation. Hence, the coordinate transformation is chosen as the shifting of the origin to

one landmark, without loss of generality. A notable characteristic of the transformations

are that they are ubiquitous to choice of parameter, D∗i or β∗i .

3.2 Simulation Results

This work shows convergence of estimate error for the observable components, under

input and measurement noise. Hence an Extended Kalman Filter is used as the observer.

The initial estimate is deviated from the system state at the first time instant. For the

components decoupled from the kernel, the estimation error converges to zero until it
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reaches an error bound significantly smaller than the initial estimate error. The state

estimation problem is also sensitive to landmark position, making it crucial to have a

good choice of landmark position. The parameters for the simulations carried out further

in this section are provided in Table 3.1.

Simulation Parameters Value

Constant Velocity (V ) 12 cm/s
Steering Angular Velocity (ω) 0.2 rad/s

Wheel Velocity Noise N (0, 0.001)
Measurement Noise N (0, 0.0001)

Sampling Time 0.025 s

Table 3.1: Parameters for EKF-based Simulation

However, the inital covariance matrix is the most crucial tuning paramter for this

simulation. The initial covariance matrix P0|0 is always a diagonal matrix, with the

diagonal values provieded in Table 3.2.

Diagonal Element Value

σ2
R 1

σ2
θ 0.1

σ2
α 0.1

σ2
D∗1

1

σ2
β∗1

0.1

Table 3.2: Diagonal Elements of P0|0 for EKF-based Simulation

3.2.1 1 landmark

The transformation for one landmark is a straightforward shift of origin to L1, akin to

that provided in [25]. The mapping is given by z = Γ(x) = [ρ β φ P1] with the following

relations: 
ρ

γ

φ

P1

 =


√

(xr − x1)2 + (yr − y1)2

atan2(yr − y1, xr − x1)− α
atan2(yr − y1, xr − x1)

D∗1 or β∗1

 (3.2)
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Figure 3.1: Pose Estimation for Transformed System (1 landmark)

where the Cartesian coordinates can be obtained from 1.6, and P1 is the polar parameter

to be . The dynamics of this system are as follows:

ż =



cos(γ)

−sin(γ)

ρ

−sin(γ)

ρ
0


V +


0

−1

0

0

ω (3.3)

yz = γ (3.4)

The observable subspace of this system has a kernel of dimension 2, spanned the vectors

[ 0 0 1 0 ]T and [ 0 0 0 1 ]T. The coupling of this kernel basis with only φ and P1 allows the

rest of the components to be observable and hence ensure guaranteed convergence of the

estimates corresponding to those components.
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Figure 3.2: Pose Estimation Error for Transformed System (1 landmark)

We simulate this system for the choice of P1 as β∗1 . For a robot initially located at

(22, 39) in the world-centric Cartesian coordinate system, we position L1 at (20, 100). For

this setup, the coordinate transformation (3.2) is applied and the EKF is applied. The

results are shown in Figures 3.1 and 3.2.

The estimation error for states ρ and γ converge to 0 rapidly. It is important to

note that since the system is non-deterministic in nature, the estimate obtained from the

EKF is also a random variable. Hence it cannot drive the estimation error completely

to zero, however it reaches an error bound which is much smaller than the initial error.

Notice that such a phenomenon does not occur for the unobservable state φ, for which

estimation error remains as large as the initial value and does not go to zero. The same

happens for the parameter, since not only is it unobservable but it does not appear in

the state or parameter equations. This is visible in Figure 3.3

The transformation and results are identical for choice of P1 as D∗1 as the parameter

does not appear in the state transition map or the output map.
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Figure 3.3: Parameter Estimation for Transformed System (1 landmark)

3.2.2 2 landmarks

For 2 landmarks, the transformation resembles the shift of origin to one of the landmarks,

without loss of generality. This transformation can be used while estimating D∗i ’s or β∗i ’s

alike. The mapping is given by z = Γ(x) = [ρ γ φ D21 θ21r] with the following relations:



ρ

γ

φ

D21

θ21r


=



√
(xr − x1)2 + (yr − y1)2

atan2(yr − y1, xr − x1)− α
atan2(yr − y1, xr − x1)√
(x2 − x1)2 + (y2 − y1)2

atan2(y2 − y1, x2 − x1)− atan2(yr − y1, xr − x1)


(3.5)
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where the Cartesian coordinates can be obtained from (1.6). The equations governing

the state evolution and output are:

ż =



cos(γ)

−sin(γ)

ρ

−sin(γ)

ρ
0

0


V +


0

−1

0

0

0

ω (3.6)

y =

[
γ

atan2 (D21 sin(θ21r + φ)− ρ sin(φ), D21 cos(θ21r + φ)− ρ cos(φ))− (φ− γ)

]
(3.7)

The observable subspace of this system has a kernel of dimension 1, spanned the

vector [ 0 0 1 0 0 ]T. The coupling of this kernel basis vector with only one state allows

the other states to be observable and hence ensure guaranteed convergence of those state

estimates. Notice that the parameters appended for this transformation are the distance

between the two landmarks, D21, and the angle subtended by L2 and R at L1, θ21r.

The implication of this result is that the relative distance and bearing between two

landmarks can be estimated, even in the absence of any other landmarks to take bearing-

only measurements from. For the simulation, the same robot initial location (22, 39) in

the world-centric Cartesian coordinate system, is considered. The two landmarks L1 and

L2 are positioned at (−40, 40) and (20, 100) respectively. The coordinate transformation

is applied and the EKF is used. The results are depicted in Figures 3.4 and 3.5.

Apart from φ, the estimation error converges for all the coordinates of z. Note that

for the transformed system, the parameters D21 and θ21r are observable. The parameter

estimation results are demonstrated in Figures 3.6 and 3.7.

43



Chapter 3. Validation of Observability Analysis

Figure 3.4: Pose Estimation for Transformed System (2 landmarks)

Figure 3.5: Pose Estimation Error for Transformed System (2 landmarks)
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Figure 3.6: Parameter Estimation for Transformed System (2 landmarks)

Figure 3.7: Parameter Estimation Error for Transformed System (2 landmarks)
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3.3 Summary

This chapter validates the observability results obtained previously by means of system

transformations that yield the observable and unobservable parts. These transformations

validate our understanding of the unobservable subspace by virtue of their structure. We

demonstrate the convergence of the observable state estimation errors in presence of

input & measurement noise. However, estimation of landmarks can be computationally

expensive and does not specifically focus on robot pose localization. In situations where

the system has to be robust to uncertainties in landmark position and still has to manage

to localize within tight error bounds, estimating landmark positions may not give the

best results. The next chapter discusses this problem and possible solutions towards the

same.
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Chapter 4

Robot Localization in Uncertain

Environments

In this chapter, we discuss state estimation to determine robot pose in scenarios where

knowledge of the environment features is inaccurate. The emphasis is placed on robot

pose localization. Two techniques are used to mitigate the resultant estimator divergence:

the Q-EKF and the PI-Q-EKF. These are described and the performance is compared

with EKF-SLAM, the standard solution to uncertain landmarks in literature.

4.1 Estimation in Uncertain Conditions

Consider the system described in Section 1.2.1, but with a panoramic image that con-

tains outdated information about the features in the environment. Hence the β∗1 ’s and

D∗i ’s obtained from it are inaccurate. For the traditional state space formulation, these

parameters are part of the measurement map. The go-to solution for this problem is

usually SLAM, since the robot pose computed is correlated to the feature positions. The

landmark position coordinates are appended to the state to give the state vector men-

tioned in Equation 2.30. The size of this state vector is 2p+ 3, thus if p is large, the state

vector becomes very large merely to accommodate incremental changes in the landmark

positions that occurred since the panoramic image was taken.
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4.1.1 Q-EKF: Characterizing Uncertainty as Process Noise

However, when the augmented state space formulation (Section 1.2.2) is used to model

the same problem, the landmark coordinates shift to the state transition map. This allows

any inaccuracy in the state transition map to be modelled as structured process noise.

Consider the true landmark coordinates, whose values are not known, to be represented

as (D∗i , β
∗
i ). The landmark coordinates, made available by the panoramic image and the

information that determines the environment scale, are (D̄∗i , β̄
∗
i ). Accounting for this

bias, the true state dynamics can be expressed as:

ẋ = f(x, u) ≈ f̄(x, u) +

p∑
i=1

JD∗i (D∗i − D̄∗i ) +

p∑
i=1

Jβ∗i (β∗i − β̄∗i ) (4.1)

where

JD∗i =
∂f(x, u)

∂D̄∗i
, Jβ∗i =

∂f(x, u)

∂β̄∗i
(4.2)

f̄(x, u) =



cos(α− θ) 0
sin(α− θ)

R
0

0 1
− sin(β1)

RC1 − D̄∗1C∗1
−1

− sin(β2)

RC2 − D̄∗2C∗2
−1

...
...

− sin(βq)

RCp − D̄∗pC∗p
−1



u (4.3)

= [g1 g2] u (4.4)

where Ci = cos(θ − (βi + α)) and C̄∗i = cos(β̄∗i − (βi + α)).

The landmark coordinate errors (D∗i − D̄∗i ) and (β∗i − β̄∗i ) are fixed biases during a

simulation if the object is not semi-static in nature. We still treat it as process noise, not

using it as as corrective term to predict x̂k+1|k, but instead incorporating the uncertainty

as an additive term while predicting Pk+1|k. The aim is not to estimate the disturbance

in the system, but merely to reject it. The addition of an extra process noise covariance
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4.1 Estimation in Uncertain Conditions

term while calculating Pk+1|k reduces the weightage of the filter on the prediction step

and gives more value to the measurements, hence mitigating estimator divergence.

Thus, after accounting for zero-mean Gaussian input noise, the prediction steps of the

EKF are:

x̂k+1 = F (x̂k, ūk) (4.5)

Pk+1|k = ΦPk|kΦ
′ + ΓuQdΓ

′
u + QD∗ +Qβ∗ (4.6)

where

F (x̂k, ūk) = x̂k +

∫ tk+1

tk

f(x̂(τ), ūk)dτ (4.7)

Φk =
∂F (x̂k, ūk)

∂x̂
(4.8)

Qd =

[
σ2
V 0

0 σ2
ω

]
(4.9)

JD∗i =
∂F(x, u)

∂D̄∗i
, Jβ∗i =

∂F(x, u)

∂β̄∗i
(4.10)

QD∗ =

p∑
i=1

JD∗i (D∗i − D̄∗i )2JD∗i (4.11)

Qβ∗ =

p∑
i=1

Jβ∗i (β∗i − β̄∗i )2J′β∗i (4.12)

The matrices QD∗ and Qβ∗ do not have be calculated; rather, based on approximate

knowledge of the absolute error in each of the coordinates, they can be tuned to get

the desired performance. Depending on the diagonal values, these matrices increase the

variance of each (β̂i)k+1|k . However, since this is merely a disturbance rejection method,

it works best when the difference between initial true state and and initial estimate is

low. The lack of a corrective term in the prediction step means that the Q-EKF cannot

filter out pre-existing estimation errors.
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4.1.2 PI-EKF: Proportional Integral Extended Kalman Filter

To alleviate this problem, we present an extension of the Proportional-Integral Kalman

Filter, presented by Linder & Shafai [44] and Shenoy [45], for nonlinear systems. The Pro-

portional Integral Extended Kalman Filter (henceforth PI-EKF) introduces an artificial

bias in the prediction step of the filter to mitigate errors introduced due to model-plant

mismatch. The bias is made up by summing up innovations over time. These innovations

are accumulated after being scaled by a ’forgetting factor’, henceforth referred to as the

integral gain matrix. The effect of this bias on the predicted estimate further depends on

a proportional gain matrix.

The revised prediction step of the filter is:

x̂k+1|k = F(x̂k|k, ūk) +Mqk

ŷk+1|k = h(x̂k+1|k)
(4.13)

The covariance prediction step and the Kalman update step remain the same as

the EKF. qk−1 ∈ Rn represents the bias constructed by accumulated innovations. It is

updated with the regular update step in the following manner:

qk+1 = qk +N
(
yk − ŷk|k−1

)
(4.14)

Here, M ∈ Rn×n and N ∈ Rn×p are the proportional and integral gain matrices. The

aforementioned matrices are chosen prior to the filtering and tuning of these matrices

considerably affects the quality of the estimates [26].

The PI-EKF can potentially correct biases due to a model-sensor mismatch that may

cause faulty measurements, however it is not equipped to do so directly. The Kalman

gain, which arises from an optimization problem for minimum state variance for the

linear Kalman filter, is not specifically designed to treat such biases, although some

system structures may render sufficiently capable. Hence this filter cannot be used for the

traditional state space model. However on using the augmented state space model along

with the additive covariance matrices QD∗ +Qβ∗ , the PI-Q-EKF can be demonstrated as

effective.
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4.2 Simulation Results

4.2 Simulation Results

The efficacy of using the augmented formulation in combination with the aforementioned

techniques is demonstrated in simulation. The bearing-only robot is simulated to move

for constant velocity inputs, with three landmarks providing bearing measurements. The

initial pose of the robot is fixed at (22, 39) with a yaw angle of 90. The parameters of the

EKF simulation are provided in Table 4.1. The initial covariance matrix is constructed

using diagonal elements from Table 4.2.

Simulation Parameters Value

Constant Velocity (V ) 10 cm/s
Steering Angular Velocity (ω) 0.5 rad/s

Wheel Velocity Noise N (0, 0.01)
Measurement Noise N (0, 0.0025)

Sampling Time 0.025 s
Simulation Length 1200 steps

Table 4.1: Parameters for EKF-based Simulation

The bearing-only localization problem is sensitive to positioning of landmarks in the

environment [46]. Hence we demonstrate simulation results for two sets of landmark

positions:

Diagonal Element Value

σ2
R 0.1

σ2
θ 0.01

σ2
α 0.01

σ2
β1

0.1

σ2
D∗1

1

σ2
β∗1

0.1

Table 4.2: Diagonal Elements of P0|0 for Simulations

The landmark coordinates are given in Table 4.3, thus ensuring that the robot always

remains inside the polygon made by the landmarks. For such localization problems, the

estimate is generally well-behaved.
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Coordinate Value Coordinate Value

D∗1 160.3122 D̄∗1 150.3122

β∗1 1.5084 β̄∗1 1.7084

D∗2 107.0047 D̄∗2 117.6713

β∗2 -0.6528 β̄∗2 -0.3528

D∗3 91.9239 D̄∗3 78.5905

β∗1 -2.3562 β̄∗1 -2.5262

Table 4.3: Parameters for EKF-based Simulation

4.2.1 EKF-SLAM

We show the results of using SLAM for this setup in Figure 4.1 and 4.2

.
Figure 4.1: 2-D Trajectory of True State & Estimate for EKF-SLAM

Notice that the estimation error significantly increased throughout the simulation.

This increase was considerably reflected in the Cartesian coordinates as well. Figures 4.3

and 4.4 show that the estimates of the landmark position coordinates did not converge

within the given time frame as well. Hence, for the time duration of the simulation,
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Figure 4.2: Estimation Error of Robot Pose for EKF-SLAM

EKF-SLAM was neither able to find accurate robot pose estimates nor was it able to

estimate the parameters to a satisfactory degree.
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.
Figure 4.3: Estimation of D∗i for EKF-SLAM

Figure 4.4: Estimation of β∗i for EKF-SLAM

54



4.2 Simulation Results

4.2.2 Augmented State + Q-EKF

We simulate the augmented state space model for the same setup. For the covariance

matrices QD∗ and Qβ∗ , it is sufficient to tune the sum of the matrices. The choice of

QD∗ + Qβ∗ for the simulation is taken as 0.1I6×6. The results are shown in Figures 4.5,

4.6 and 4.7.

.
Figure 4.5: 2-D Trajectory of True State & Estimate for Augmented State + Q-EKF
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Figure 4.6: Robot Pose Estimation for Augmented System + Q-EKF

Figure 4.7: Robot Pose Estimation Error for Augmented System + Q-EKF
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We observe that the expected divergence in true state and estimate is considerably

mitigated by the addition of the extra covariance terms. However, the initial estimate

error is not rectified and a deviant, slightly warped circular trajectory is traced by the

estimate.

Another remark that is relevant here is regarding to the disturbance rejection prop-

erty that this choice of system formulation and EKF observer possesses. If the initial

estimate matches the true state, for the augmented model paired, the Q-EKF can keep

the estimation error close enough to 0. However, on the other hand, if the initial estima-

tion error is high, it is outperformed by EKF-SLAM. Fortunately, the PI-Q-EKF corrects

that.

4.2.3 Augmented State + PI-Q-EKF

The same setup is simulated for the augmented model paired with the PI-EKF along with

the added process covariance matrices, along with the extra covariance terms QD∗ and

Qβ∗ . The choice of QD∗+Qβ∗ for the simulation is taken as 0.1I6×6. The more important

tuning parameters in this simulation are M and N . They are chosen as:

N =



2.2 2.2 2.2

0.055 0.055 0.055

−0.07 −0.07 −0.07

1 0 0

0 1 0

0 0 1


(4.15)

M = 0.4I6×6 (4.16)

For these set of matrices, along with the parameters mentioned in Tables 4.1, 4.2 and

4.3, the results are given in Figures 4.8, 4.9 and 4.10.
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.
Figure 4.8: 2-D Trajectory of True State & Estimate for Augmented State + PI-Q-EKF

Figure 4.9: Robot Pose Estimation for Augmented System + PI-Q-EKF
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4.3 Summary

Figure 4.10: Robot Pose Estimation Error for Augmented System + PI-Q-EKF

The estimation error reduces considerably. However, this is sensitive to the choice of

the elements of the integral gain matrix. Restricting the search to matrices of the form

N = n0[ ~n1 ~n2 ~n3 n4Ip×p]
T where ~ni = ni[1 1 1]T, i ∈ {1, 2, 3} seems sufficient, however

the search for ni, i ∈ {0, 1, 2, 3, 4} is the crucial step. The choice of M as m0In×n is also

sufficient. The selection of m0 and n0 is primarily the search for an upper bound, above

which the state estimates stop converging further and instead start oscillating around the

convergent estimate value at that time instant.

4.3 Summary

This chapter proposes solutions to better and faster robot pose localization in conditions

where the robot does not have exact knowledge of its surroundings. Two modifications to

the EKF are presented, which when paired with the augmented state space formulation,

lead to better results. The augmented state space formulation has a state vector size

of p + 3 as compared to 2p + 3 for EKF-SLAM. This points to a large difference in

computational time for a large number of features in the environment, which is the case

for a robot moving around in real-world scenarios. In the next chapter, we observe the
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performance of these filters in a simulation environment that mimics the real world quite

closely.
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Chapter 5

Simulations in ROS-Gazebo

Environment

This chapter applies the Extended Kalman Filters discussed in the previous section,

to a robot model possessing vision capabilities, in a virtual world created on Gazebo.

This simulation study enables performance comparisons between them for a robot and

environment model that emulate real-life behaviour to a great extent. It also provides an

opportunity to analyse how they behave in a multi-rate measurement scenario. However,

most importantly, an implementation of these filters in conjunction with a vision pipeline

helps to evaluate the joint performance of each combination.

In this work, we discuss localization scenarios for accurately as well as inaccurately

known landmark positions. For accurately known landmarks, the comparison is made

between an EKF implemented on traditional and augmented state space formulations.

In the latter case, a comparative is drawn between the Q-EKF used with the augmented

state, and EKF-SLAM used with the standard formulation. The Individual Compatibility

Nearest Neighbours test is incorporated into each filter to use measurement predictions

to eliminate spurious matches.

5.1 Camera Model

5.1.1 Transformation to Image Space

The raw measurement obtained from the camera is in the image space. To establish a

measurement model, a coordinate transformation between the world frame and camera
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frame. The robot model consists of two wheels and two casters. hence it fits the descrip-

tion of a non-holonomic unicycle bot. The camera is located radially outward from the

robot on its cylindrical base, as shown in Figure 5.1

Figure 5.1: Wheeled Robot Model

The axes for the camera are chosen such that the forward direction is chosen as the z

axis, while the x and y axes are along the horizontal and vertical directions in the plane

perpendicular to the velocity vector, respectively.

Hence the transformation of a feature point in world-centric coordinates, to camera

coordinates are: xc

yc

zc

 =

 sinα − cosα 0

0 0 1

cosα sinα 0



 xi

yi

zi

−
 xR + rcam cosα

yR + rcam cosα

zR + zcam


 (5.1)
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5.2 Gazebo Model & Environment

where (xR, yR, zR) are the coordinates of the robot base centroid, while

(rcam cosα, rcam sinα, zcam) are the coordinates of the camera relative to the base centroid.

The origin of the image frame is located at the top left corner. Hence, the second

transformation to the image frame is as follows:

[
u′

v′

]
=

 −fx
xc
zc

+ cx

−fy
yc
zc

+ cy

 (5.2)

=

[
−fx tan βi + cx

−fy tan γi + cy

]
(5.3)

where fx, fy are the vertical and horizontal focal lengths of the camera and cx, cy are

the horizontal and vertical coordinates of the image centroid.

The image space has pixel values within the range 1 ≤ u′ ≤ 2cx − 1 , u′ ∈ N and

1 ≤ v ≤ 2cy − 1 , v ∈ N. Hence this transformation is defined only for |fx
xc
zc
| < cx − 1,

|fy
yc
zc
| < cy − 1, which is called the camera’s field of view. A point in camera coordinates

that does not lie within this field of view is not visible to the camera. The concept of

multi-rate measurements arises due to a limited field of view of the camera.

5.1.2 Choice of Measurement

The raw measurements u′ and v′ are available to the camera for a feature as long as it is

visible and matched correctly. These coordinates can be transformed to observed in-plane

bearing angle βi and elevation angle γi respectively. However, for this set of simulations,

the conversion to the relative angles observed for a feature are used as measurements for

the EKFs. We only use βi for outlier rejection and to update the predicted estimate.

However the use of βi and γi from every observed feature would enable more accurate

outlier rejection and arguably make the estimate bounds tighter.

5.2 Gazebo Model & Environment

Gazebo possesses the ability to create 3-dimensional dynamic environments and mimic

real-world physics to a sufficiently realistic degree [47]. The choice of environment is
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crucial for any vision-based task [48] since a lot of computer vision algorithms pose

advantages towards achieving specific goals in specific situations. Depending on criteria

such as feature density and how far the features are from the action space, considerations

are made for computational cost and accuracy.

The environment chosen for this work is planar for the following reasons:

• A planar environment permits repeated feature detection for an interest point as

well as accurate feature matching for a larger field of view than a non-planar envi-

ronment.

• The scale of a feature cannot be determined from a single view. With one view

available from the image, D∗i can be found for a feature only when it is in the

field of view and matched correctly. Real-time vision can entail incorrect data

association here since lack of knowledge of the landmark position implies that outlier

rejection methods used later in this work cannot be used here. However for a planar

environment, a-priori knowledge of the scale of the environment and the features

solves the problem of scale by determining one coordinate.

8 textured posters are inserted on 4 walls such that a sufficiently field of view is

covered. The the square room created by the wall is 10 m in size. A 360 panoramic view

of the surroundings is available to the robot in the form of concatenated images taken at

the reference position with various orientations. For this world, the panoramic image is

provided in Figure 5.2.

Figure 5.2: Panoramic Image available from Reference Position

Apart from the posters, the wall edges and corners are also detected as feature points,

as as the visible perimeter of the robot base. The quantity and quality of the former,
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in terms of repeatability and strength, depends on the type of feature detector used.

However any feature belonging to the latter category is eliminated from consideration in

feature matching.

5.3 Vision Pipeline

5.3.1 Feature Detection & Extraction

A simple vision pipeline is used to enable the camera to detect previously identified

features. These features are initialized after being detected from the panoramic image

shown in Figure 5.2. The choice of feature detector used is FAST, and the description

of these features are stored in SURF. This combination requires much less computation

time than that while using SIFT [49], while it detects many more interest points than

ORB. However, it is less robust to projective transformations, hence when the robot is

close to the wall the interest point may not be detected as a feature. The problem of

detecting multiple features in adjacent locations is mitigated by enabling non-maximal

suppression, which picks the ’strongest’ features from 16 surrounding pixels [50]. The

threshold value that the FAST algorithm takes as a parameter also allows tuning of the

number of features extracted from the environment.

5.3.2 Feature Matching

The first step towards data association is not a maximum likelihood approach, as there

is valuable information captured from the interest points using which can be used to

obtain an initial hypothesis. Hence, a suitable matching algorithm is used to find the

nearest neighbours of the live feed image feature descriptors, from the set of feature

descriptors obtained from the panoramic image. The feature matcher used is the Brute

Force Matcher, as it is more accurate in performance than FLANN Matching and for the

number of features detected in the environment, the computation time for both matching

algorithms is comparable. kNN Matching is used to get the best 2 neighbours for a query

image feature, after which Lowe’s ratio test [51] is used for r = 0.65 to choose the accurate

matches.

The detection of all the scenes features for a scene is not guaranteed. This is because

for the Gazebo camera model, the pixel values of each point on the live feed do not
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remain constant in time, even for a static robot. As a consequence, the number of

matches between the live feed and the panoramic image vary from time to time even

for a still robot. However, large deviations from the norm do not occur and number of

matches for various robot poses do not vary beyond a small bound.

5.3.3 Outlier Rejection

This work uses the Individual Compatibility test for nearest neighbours (ICNN) test to

reject spurious matches by using the predicted measurement and the covariance of the

innovations from the filter, creating a gate for measurements. Let pv be the number of

initial matches, while q denotes the number of matches accepted by the outliter rejection

step. An initial hypothesis H = {j1, j2, . . . jpv} is generated from the feature matching

algorithm, based on nearest neighbour distances of the feature descriptors for the training

and query image. This hypothesis creates the measurement yi to the landmark Lji . The

likelihood of this match can be determined using the Mahalonobis distance:

Mij = (yi − ŷji)S−1(yi − ŷji)T (5.4)

where, at the kth time instant, Sk = CkPk|k−1C
T
k + Rk. Since the innovation υij =

(yi − ŷji) is χ2 distributed, for a confidence interval α, the hypothesis Hi holds true if:

Mij = υijS
−1υTij < χ2

α,d (5.5)

where yi ∈ R.

The match is termed as a ‘correct match‘ henceforth in the chapter if for that partic-

ular hypothesis, Equation 5.5 holds true. Hence a ‘correct match‘ may indeed be a false

positive if a hypothesis incorrect in reality passes the aforementioned test.

Since for these set of simulations we only take one measurement from each landmark,

βi, d = 1. We require a 99% confidence interval for the square of the Mahalonobis distance

be less than the corresponding value of the inverse of the χ2 cumulative distribution

function. If Mij does not lie within these bounds, Hij is deemed false and yi is not

included in the final list of measurements.

The individual compatibility test lends itself to a simple test once a hypothesis has

been established. However Neira & Tardos [52] demonstrate the shortcomings of using

individual compatibility for a nearest neighbours search.
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ŷk+1|k

i = 0

check
False

True

False check
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Figure 5.3: Flowchart for Gazebo-based Simulations

5.4 Simulations for Accurately Known Landmark Po-

sitions

We discuss the simulations performed when the panoramic image is able to capture

landmark positions accurately. The simulations are performed with the computation

distributed between a C++ ROS node and MATLAB. The flowchart for the simulation

is provided in Figure 5.3.

The same environment and panoramic image is used for all the simulations in this

chapter. The environment is completely static. Further details regarding the environment

and tuning parameters for the simulations are provided in Table 5.1. The internal pa-

rameters of the camera are provided in Table 5.2, while Table 5.3 contains the important

dimensions of the robot.
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Simulation Parameters Value

Constant Velocity (V ) 0.1 m/s
Steering Angular Velocity (ω) 0.1 rad/s

Wheel Velocity Noise N (0, 0.001)
Measurement Noise N (0, 0.0025)

Total Number of Features (p) 695

Table 5.1: Parameters for Gazebo Simulation

Camera Parameters Value

Camera field of view π/2
Horizontal Focal Length (fx) 399.998

Vertical Focal Length (fy) 399.998
Horizontal Offset (cx) 400.5

Vertical Offset (cx) 400.5

Table 5.2: Camera Parameters

Robot Dimensions Value

rcam 0.125 m
zR 0.4 m
zcam 0.0725 m

Lateral wheel separation 0.3 m

Table 5.3: Robot dimensions

Due to the nature of the code, the real time factor of Gazebo is kept at 0.02 for

this simulation. The EKF for augmented state takes significantly longer to complete one

iteration than that for the traditional state, hence the sampling time is limited to 11Hz

(in Gazebo time). The figure on the left is the live feed, while matches are drawn with

randomly coloured horizontal lines

5.4.1 Traditional State + EKF

The results of an EKF used as an observer for the traditional bearing-only state space

formulation can be seen in Figures 5.4, 5.5, 5.6 and 5.7:
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Figure 5.4: 2-D Trajectory of True State & Estimate for Traditional State + EKF

Figure 5.5: Pose Estimation for Traditional State + EKF
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Figure 5.6: Pose Estimation Error for Traditional State + EKF

Figure 5.7: Total & Correctly Matched Features for Traditional State + EKF

70



5.4 Simulations for Accurately Known Landmark Positions

Figure 5.8 shows the location of the landmarks as known to the system. Figure 5.9

shows the matched features at the first time instant, with the live feed on the left and

the panoramic image on the right. Since for all the simulations in this section the pose

at t = 0 is the same, these features are available to the robot in all the simulations and

the number of matches roughly remain the same.

Figure 5.8: 3-D Location of Landmarks as known to System
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Figure 5.9: Matched Features at Initial Time Instant

The ratio of correct matches to total matches is very high. This implies that most of

the correct feature matches are passing the outlier rejection test. The estimates are not

divergent in nature, however jumps are observed at certain time instants in the simulation.

5.4.2 Augmented State + EKF

The results of an EKF simulated for the augmented state space system can be seen in

Figures 5.10, 5.11, 5.12 and 5.13:
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Figure 5.10: 2-D Trajectory of True State & Estimate for Traditional State + EKF

Figure 5.11: Pose Estimation for Traditional State + EKF

73



Chapter 5. Simulations in ROS-Gazebo Environment

Figure 5.12: Pose Estimation Error for Traditional State + EKF

Figure 5.13: Total & Correctly Matched Features for Traditional State + EKF
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As discussed before, the pose estimation error remains low when the augmented state

space formulation is used and the error in in the initial state is low. Hence, for this

simulation, the EKF used with the augmented state outperforms the EKF used with

the traditional state. However, the filter rejects measurements after some time into the

simulation. This is because of the low variance values of βi in the augmented state

covariance matrix, which increases the Mahalonobis distance of the innovations. As the

trajectory taken by the robot is the same, a lot of correctly matched features are falsely

rejected by the filter after some time into the simulation.

5.5 Simulations for Inaccurately Known Landmark

Positions

This section discusses simulations where the system does not possess the correct landmark

positions. A comparative study is conducted between the EKF-SLAM technique and the

augmented state used with the Q-EKF. The results are then compared below, in terms

of estimation error and matching accuracy. The enormous sizes of the state vectors for

both cases require the simulations to be run at 2 Hz while Gazebo runs at the same real

time factor of 0.03. The knowledge of D∗i ’s and β∗i ’s are corrupted by random zero-mean

uniform noise with ranges 0.8 m and 0.15 rad respectively.

The state vector sizes for EKF-SLAM and the Q-EKF paired with the augmented

states are 2p + 3 and p + 3 and for these set of simulations, according to Table 5.1,

p = 695. Hence the latter runs much faster than the former, however the comparison is

performed at equal sampling times.

5.5.1 EKF-SLAM

The simulation results for EKF-SLAM for the conditions given in Tables 5.1, 5.2 and 5.3

are given below in Figures 5.14, 5.15, 5.16 and 5.17.
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Figure 5.14: 2-D Trajectory of True State & Estimate for EKF-SLAM

Figure 5.15: Pose Estimation for EKF-SLAM
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Figure 5.16: Pose Estimation Error for EKF-SLAM

Figure 5.17: Total & Correctly Matched Features for EKF-SLAM
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The pose estimates initially diverge but then remain in proximity of the true state.

The feature matching has a very high ratio of correct matches to total matches as well.

5.5.2 Augmented State + Q-EKF

The augmented state is simulated with the Q-EKF as an observer. The simulations are

run for two choices of QD∗+Qβ∗ : 0.01In×n and 0.1In×n. The results for the former tuning

value are demonstrated in Figures 5.18, 5.19, 5.20 and 5.21

Figure 5.18: 2-D Trajectory of True State & Estimate for Augmented State + Q-EKF
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Figure 5.19: Pose Estimation for Augmented State + Q-EKF

Figure 5.20: Pose Estimation Error for Augmented State + Q-EKF
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Figure 5.21: Total & Correctly Matched Features for Augmented State + Q-EKF

The Q-EKF clearly demonstrates superior performance in terms of estimation error.

However, the extra benefit of the added process noise covariance matrix is that it boosts

the diagonal values of βi’s. Hence the outlier rejection gate gets wider and more correct

measurements are accepted than in Figure 5.13. Thus the addition of QD∗ + Qβ∗ in the

covariance propagation step is beneficial in two ways.

The performance of the augmented state + Q-EKF is compared for the two afore-

mentioned values of the tuning parameter QD∗ + Qβ∗ . While the estimation errors are

practically identical, there is a big difference between the proportion of correct matches.

The identical estimation errors also imply that none of the additional correct matches

obtained by increasing the covariance matrix diagonal values are in reality false corre-

spondences.
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Figure 5.22: Estimation Error for different values of QD∗ +Qβ∗

Figure 5.23: Percentage of Feature Matches for different values of QD∗ +Qβ∗
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5.6 Summary

In this chapter, the efficacy of the two state space models are compared for a robot model

in a Gazebo environment. The addition of a vision pipeline and an outlier rejection step

in the filter demonstrates performance in more realistic settings. For a low error in the

initial state estimate, the augmented state space model with an appropriate choice of filter

works much better than the traditional state space model, regardless of the accuracy of

the robot’s knowlegde of the landmark positions in the environment. The better choice is

evident if the knowledge is not accurate, however if it is, then the traditional formulation

does not require any parameter estimation. In that case, the augmented state space

formulation is much more computationally expensive. Hence the trade-off lies in the

quantification of the error in the information available to the robot, in terms of the

position of features in the environment.
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Chapter 6

Conclusion & Future Work

This chapter concludes the study on bearing-only localization in uncertain environments.

The avenues for further work are discussed and the opportunities and potential pitfalls

of each research direction are briefly stated.

6.1 Conclusion

This study deals with two different sub-problems of the bearing-only localization problem,

in four parts. The first part establishes the concept of observability for piecewise constant

as well as analytic inputs. It uses symbolic computation to calculate the kernel basis for

the observable space for various joint state and parameter estimation problems. Lower

bounds on the number of landmarks required for such formulations to achieve maximal

observability rank, are established. The basis vectors are then interpreted to yield a phys-

ically intuitive loci of initial states that are degenerate in their input-output maps. The

second part validates the observability results by presenting Kalman decomposition-like

transformation for joint state and parameter formulations for p = 1, 2. The convergence

of state estimate is demonstrated for the observable states and the transformed unob-

servable states reinforce the intuition derived from the results in the previous part.

The third part discusses the problem of robust localization for environments where

information about landmarks is not accurate. The emphasis is placed solely on retaining

accurate estimates and not on map building. Towards that end, a disturbance rejection

technique is proposed, consisting of a filter with added process noise covariance (the Q-

EKF) used as an observer for the augmented state space formulation. Such a technique
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mitigates estimation error divergence but is incapable of correcting any initial errors. The

PI-Q-EKF uses an integral gain to eliminate this bias. To ensure unbiased estimation

errors, structure for the proportional and integral gains is provided with reasoning for

the same. The fourth part carries these simulations onto a ROS-Gazebo environment for

a mobile wheeled robot with a camera. The effects of the former two techniques working

alongside a compatibility test for outlier rejection are elaborated upon.

6.2 Future Work

Several research directions from this point forward offer considerable promise. Some of

them are listed below:

• Extension to Semi-Static and Dynamic Landmarks: This work can be ex-

tended to semi-static or dynamic landmarks by characterizing the intermittent shift

or motion in position respectively and accounting for their dynamics in the system

equations appropriately.

• Generalizing Coordinate Transformation for p Landmarks: The transfor-

mations provided in Chapter 4 are only applicable for p = 1, 2. A different set of

transformations is required that can be generalized to an arbitrary number of land-

marks, for various joint state and parameter estimation problems. Isidori [36] proves

that such a transformation exists. The consequence would be further validation of

observability results for p > 2.

• PI-Q-EKF Gain Structure for Multi-Rate Measurements: In Chapter 5, the

gains of PI-EKF were constant throughout the simulation, as was the number of

landmarks observed at each time instant. However, with intermittent observations

available from each landmark in a setting such as in Chapter 6, the gains must be

tuned for each trajectory to account for the variation in the number of correctly

matched features throughout the simulation. However, the effect of a constant gain

structure for a multi-rate structure is unknown as of now. It is also possible that

constant proportional and integral gains may not yield estimator convergence. In

that scenario, calculation of adaptive gains such as in [53] can be looked into as a

possible solution.
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• Extending Gazebo Simulations to Non-Planar Environment: As discussed

before, the planarity combined with previously known information about environ-

ment scale helps us identify the coordinates of all the features in the environment.

In a situation where prior information about surroundings is not available, such as

in a non-planar environment, multiple view geometry can help us find the scale of

landmarks that are being observed at a given time instant. However, more robust

vision techniques such as active feature search [54] are required to ensure more

suitable data association techniques for landmarks on 3-D objects. The concept of

initialization, such as in contemporary SLAM, would also be crucial because the

quantities used to determine scale (such as robot pose) are probabilistic nature,

hence requiring a number of time instants before the scale can be bound within a

tight interval.
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